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We propose two types of evolving networks: evolutionary Apollonian networks �EANs� and general deter-
ministic Apollonian networks �GDANs�, established by simple iteration algorithms. We investigate the two
networks by both simulation and theoretical prediction. Analytical results show that both networks follow
power-law degree distributions, with distribution exponents continuously tuned from 2 to 3. The accurate
expression of clustering coefficient is also given for both networks. Moreover, the investigation of the average
path length of EAN and the diameter of GDAN reveals that these two types of networks possess small-world
feature. In addition, we study the collective synchronization behavior on some limitations of the EAN.

DOI: 10.1103/PhysRevE.74.046105 PACS number�s�: 89.75.Da, 05.10.�a, 05.45.Xt

I. INTRODUCTION

In the last few years, complex networks have attracted a
growing interest from a wide circle of researchers �1–4�,
with particular focus on the following three properties:
power-law degree distribution �5�, small average path length
�APL�, and high clustering coefficient �6�. The reason for
this boom is that complex networks describe many systems
in nature and society which share the above mentioned three
characteristics.

In order to mimic the real-world systems, a wide variety
of models have been proposed �1–4�. The first successful
attempt is the Watts and Strogatz’s �WS� small-world net-
work model �6�, which started an avalanche of research on
the models of small-world networks and the WS model
�7–11�. Another well-known model is Barabási and Albert’s
�BA� elegant scale-free network model �5�, which has at-
tracted an exceptional amount of attention within the physics
community. In addition to analytic studies of the BA model
and research of its extensions or modifications �12–14�,
many authors have developed a considerable number of
other models and mechanisms that may represent processes
more realistically taking place in real-world networks
�15–23�. Modeling complex networks with small-world and
scale-free properties is still an important issue.

Recently, based on the well-known Apollonian packing,
Andrade et al. introduced Apollonian networks �24� which
were also proposed by Doye and Massen in Ref. �25� simul-
taneously. Apollonian networks belong to a deterministic
growing type of networks, which have drawn much attention
from the scientific community �26–35�. The effects of the
Apollonian networks on several dynamical models have been
intensively studied, including the Ising model and a magnetic
model �24,36–38�. Doye and Massen adopted an extension
�25� of the two-dimensional model to investigate energy
landscape networks �39,40�. Zhang et al. proposed a minimal

iterative algorithm for constructing high dimensional
networks and studied their structural properties �41�. In Ref.
�42� Zhou et al. proposed a simple rule that generates ran-
dom two-dimensional Apollonian networks, which are gen-
eralized by Zhang et al. to high dimension �43�. The deter-
ministic Apollonian networks �DANs� �24,25,41� and
random Apollonian networks �RANs� �42,43� may provide
valuable insight into the real-life networks.

In this paper, first we propose a general scenario for con-
structing evolutionary Apollonian networks �EANs� con-
trolled by a parameter q. The EAN can also result from
Apollonian packing and unifies the DAN and RAN to the
same framework, i.e., the DAN and RAN are special cases of
EAN. Then, we present a general deterministic Apollonian
network �GDAN� model governed by a single parameter m.
Both the EAN and GDAN have a power-law degree distri-
bution, a very large clustering coefficient, and a small inter-
vertex separation. The degree exponent of EAN and GDAN
is changeable between 2 and 3. Moreover, we introduce an
algorithm for the DAN and RAN which can realize the con-
struction of our networks. In the end, through the eigenvalue
spectrum of the Laplacian matrix, the synchronizability on
some limiting cases of the EAN is discussed.

II. BRIEF INTRODUCTION TO DETERMINISTIC AND
RANDOM APOLLONIAN NETWORKS

We first introduce Apollonian packing �see Fig. 1 for an
example of two dimensions�, which dates back to the ancient
Greek mathematician Apollonius of Perga. The classic two-
dimensional Apollonian packing is constructed as follows.
Initially three mutually touching disks are inscribed inside a
circular space which is to be filled. The interstices of the
initial disks and circle are curvilinear triangles to be filled.
We denote this initial configuration by generation t=0. Then
in the first generation t=1, four disks are inscribed, each
touching all the sides of the corresponding curvilinear tri-
angle. The process is repeated indefinitely for all the new
curvilinear triangles. In the limit of infinite generations, we
obtain the well-known two-dimensional Apollonian packing.
The translation from Apollonian packing construction to
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Apollonian network generation is quite straightforward. Let
the nodes �vertices� of the network correspond to the disks
and make two nodes connect if the corresponding disks are
tangent �24,25�. Figure 2 shows a network based on the two-
dimensional Apollonian packing. The two-dimensional Apol-
lonian network can be easily generalized to high dimensions
�d-dimensional, d�2� �25,41� associated with other self-
similar packings �44�. The d-dimensional Apollonian pack-
ings start with d+1 mutually touching d-dimensional hyper-
spheres that is enclosed within and touching a larger
d-dimensional hypersphere, with d+2 curvilinear
d-dimensional simplices �d simplices� as their interstices,
which are to be filled in successive generations. If each d
hypersphere corresponds to a node and nodes are connected
if the corresponding d hyperspheres are in contact, then
d-dimensional Apollonian networks are established. In every
generation of the d-dimensional Apollonian packings, if we
add only one d hypersphere inside a randomly selected inter-
stice, then we get high dimensional random Apollonian pack-
ings, based on which high dimensional random Apollonian
networks are constructed �42,43�.

III. THE ITERATIVE ALGORITHMS FOR THE
NETWORKS

Before introducing the algorithms we give the following
definitions on a graph. The term “size” refers to the number
of edges in a graph. The number of nodes in the graph is
called its “order.” When two nodes of a graph are connected
by an edge, these nodes are said to be “adjacent,” and the
edge is said to join them. A “complete graph” is a graph in
which all nodes are adjacent to one another. Thus, in a com-
plete graph, every possible edge is present. The complete
graph with d graph nodes is denoted as Kd �also referred to in
the literature as a “d clique;” see Ref. �45��. Two graphs are
“isomorphic” when the nodes of one can be relabeled to

match the nodes of the other in a way that preserves adja-
cency. Hence all d cliques are isomorphic to one another.

A. Evolutionary Apollonian networks

Now we introduce the evolving Apollonian networks.
First we give a new packing method for high-dimensional
�d-dimensional, d�2� Apollonian packings. The initial con-
figuration is the same as the deterministic Apollonian pack-
ings. Then in each subsequent generation, each d simplex is
filled with probability q. In a special case q=1, it is reduced
to the classic deterministic Apollonian packings. if q ap-
proaches but is not equal to 0, it coincides with the random
Apollonian packings described in Refs. �42,43�. The EAN is
derived from this new packing: nodes represent d hyper-
spheres and edges correspond to contact relationship. Figure
2 shows the network growing process for the special case of
d=2 and q=1.

In the construction process of the new high-dimensional
Apollonian packings, for each new d hypersphere, d+1 new
interstices are created. When building networks, it is equiva-
lent that for each new added node, d+1 new d simplices are
generated, which may create new nodes in the subsequent
generations. According to this, we can introduce a general
algorithm to create an EAN, using which one can write a
computer program conveniently to simulate the networks and
study their properties.

The d-dimensional EANs after t generations are denoted
by A�d , t�, d�2, t�0. Then at step t, the d-dimensional
EAN is constructed as follows. For t=0, A�d ,0� is a com-
plete graph Kd+2 �or �d+2� clique�. For t�1, A�d , t� is ob-
tained from A�d , t−1�. For each of the existing subgraphs of
A�d , t−1� that is isomorphic to a �d+1� clique and has never
generated a node before �we call them active �d+1� cliques�,
with probability q, a new node is created and connected to all
the nodes of this subgraph. The growing process is repeated

FIG. 2. �Color online� Illustration of the two-dimensional
deterministic Apollonian networks, showing the first two steps of
iterative process.

FIG. 1. �Color online� A two-dimensional Apollonian packing of
disks.
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until the network reaches a desired order. When q=1, the
networks are exactly the same as the DAN �24,25,41�. If
q�1, the networks grow randomly. Especially, as q ap-
proaches zero and does not equal zero, the networks are re-
duced to the RAN studied in detail in Refs. �42,43�. See Ref.
�46� for interpretation.

Next we compute the size and order of EAN. Note that
the addition of each new node leads to d+1 new �d+1�
cliques and d+1 new edges. Then, at step 1, we add expected
Lv�1�= �d+2�q new nodes and Le�1�= �d+2��d+1�q new
edges to the graph. After simple calculations, one can obtain
that at ti�ti�1� the numbers of newly born nodes and edges
are Lv�ti�=q�d+2��1+dq�ti−1 and Le�ti�=q�d+1��d+2��1
+dq�ti−1, respectively. Thus the average number of total
nodes Nt and edges Et present at step t is

Nt = �d + 2� + �
ti=1

t

Lv�ti� = �d + 2�
�1 + dq�t + d − 1

d
�1�

and

Et =
�d + 2��d + 1�

2
+ �

ti=1

t

Le�ti� = �d + 2��d

+ 1�
2�1 + dq�t + d − 2

2d
, �2�

respectively. So for large t, The average degree k̄t=
2Et

Nt
is

approximately 2�d+1�. Moreover, when d=2, we have
Et=3Nt−6. Thus in this case, all networks are maximal pla-
nar networks �or graphs� �42�.

B. General deterministic Apollonian networks

According to the construction process of d-dimensional
Apollonian packings, in Ref. �41�, a generation algorithm for
d-dimensional Apollonian networks was proposed. Here we
generalize the algorithm to establish general deterministic
Apollonian networks �GDANs�. The network, denoted by
G�d , t� after t generations with d�2 and t�0, is constructed
in an iterative way. For t=0, G�d ,0� is a complete graph
Kd+2 �or �d+2� clique�. For t�1, G�d , t� is obtained from
G�d , t−1�. For each of the existing subgraphs of G�d , t−1�
that is isomorphic to a �d+1� clique and created at step
t−1, m new vertices are created, and each is connected to all
the vertices of this subgraph. In the limit of infinite genera-
tions we obtain GDAN. When m=1, the networks are re-
duced to DANs �24,25,41�.

Let Lv�t�, Le�t�, and K�d+1�,t be the numbers of vertices,
edges, and �d+1� cliques created at step t, respectively.
Because the addition of each new vertex leads to d+1
new �d+1� cliques and d+1 new edges, we have Lv�t�
=mK�d+1�,t−1, Le�t�= �d+1�Lv�t�, and K�d+1�,t= �d+1�Lv�t�.
Thus one can easily obtain K�d+1�,t=m�d+1�K�d+1�,t−1= �d
+2��m�d+1��t �t�0�, Lv�t�= �d+2�mt�d+1�t−1 �t�0�, and
Le�t�= �d+2�mt�d+1�t �t�0�. From these results, we can
easily compute the size and order of the networks. The total
number of vertices Nt and edges Et present at step t is

Nt = �
ti=0

t

nv�ti� =
m�d + 2��mt�d + 1�t − 1�

m�d + 1� − 1
+ d + 2 �3�

and

Et = �
ti=0

t

ne�ti� =
m�d + 2��d + 1��mt�d + 1�t − 1�

m�d + 1� − 1

+
�d + 2��d + 1�

2
, �4�

respectively. So for large large, The average degree k̄t=
2Et

Nt

approaches 2�d+1�.

IV. RELEVANT CHARACTERISTICS OF THE
NETWORKS

In the following we will study the topology properties of
EAN and GDAN, in terms of the degree distribution,
clustering coefficient, average path length, and diameter.

A. Degree distribution

The degree distribution is one of the most important
statistical characteristics of a network. We will discuss the
degree distribution of EAN and GDAN in detail.

1. Evolutionary Apollonian networks

When a new node i is added to the graph at step ti, it has
degree d+1 and forms d+1 active �d+1� cliques. Let Lc�i , t�
be the number of active �d+1� cliques at step t that will
possibly created new nodes connected to the node i at step
t+1. Then at step ti, Lc�i , ti�=d+1. At step ti+1, there are
�d+1�q new nodes which forms �d+1�qd new active �d+1�
cliques containing i, and there are �d+1�q active �d+1�
cliques of i are deactivated at the same time. Thus Lc�i , ti

+1�= �d+1��1+ �d−1�q�. It is not difficult to find the follow-
ing relation: Lc�i , t+1�=Lc�i , t��1+ �d−1�q�. Since Lc�i , ti�
=d+1, we have Lc�i , t�= �d+1��1+ �d−1�q�t−ti. Then the
degree ki�t� of node i at time t is

ki�t� = d + 1 + q�
�=ti

t−1

Lc�i,��

= �d + 1�� �1 + �d − 1�q�t−ti + d − 2

d − 1
� . �5�

Since the degree of each node has been obtained explicitly as
in Eq. �5�, we can get the degree distribution via its cumula-
tive distribution, i.e., Pcum�k���k��kN�k� , t� /Nt	k1−�,
where N�k� , t� denotes the number of nodes with degree k�.
The detailed analysis is given as follows. For a degree k

k = �d + 1�� �1 + �d − 1�q�t−m + d − 2

d − 1
� ,

there are Lv�m�=q�d+2��1+dq�m−1 nodes with this exact de-
gree, all of which were born at step m. All nodes born at time
m or earlier have this or a higher degree. So we have
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�
k��k

N�k�,t� = �d + 2� + �
s=1

m

Lv�s� = �d + 2�
�1 + dq�m + d − 1

d
.

As the total number of nodes at step t is given in Eq. �1� we
have


�d + 1�� �1 + �d − 1�q�t−m + d − 2

d − 1
��1−�

=

�d + 2�
�1 + dq�m + d − 1

d

�d + 2�
�1 + dq�t + d − 1

d

.

Therefore, for large t we obtain

��1 + �d − 1�q�t−m�1−� = �1 + dq�m−t

and

� � 1 +
ln�1 + dq�

ln�1 + �d − 1�q�
. �6�

Thus, the degree exponent � is a continuous function of d
and q, and belongs to the interval �2,3�. For any fixed d, as q

decrease from 1 to 0, � increases from 1+
ln�1+d�

ln d to 2+ 1
d−1 . In

the case d=2, � can be tunable between 2.58496 and 3.
In the two limitations, i.e., q=1 and q→0 �but q�0�, the
evolutionary Apollonian network reduces to the deterministic
Apollonian networks �24,25,41� and their stochastic variants
�42,43�, respectively. Figure 3 shows, on a logarithmic scale,
the scaling behavior of the cumulative degree distribution
Pcum�k� for different values of q in the case of d=2.
Simulation results agree very well with the analytical ones.

2. General deterministic Apollonian networks

Considering a vertex i added to the networks at step ti. Let
K�d+1��i , t� be the number of newly created �d+1� cliques at
step t containing vertex i. These new cliques will create new
vertices connected to the vertex i at step t+1. At step ti,
K�d+1��i , ti�=d+1. From the iterative process, one can see
that each new neighbor of i generates d new �d+1� cliques
with i belonging to them. Then it is not difficult to find the
following relations:

�ki�t� = ki�t� − ki�t − 1� = mK�d+1��i,t − 1�

and

K�d+1��i,t� = dmK�d+1��i,t − 1� = �d + 1��dm�t−ti.

Then the degree of vertex i becomes

ki�t� = ki�ti� + m�
�=ti

t−1

K�d+1��i,��

=
m�d + 1���md�t−ti − 1� + d2 − 1

d − 1
. �7�

For a degree k

k =
m�d + 1���md�t−p − 1� + d2 − 1

d − 1
,

there are nv�p�= �d+2�mp�d+1�p−1 vertices with this exact
degree. Also, we have

�
k��k

N�k�,t� = �
s=0

p

nv�s� =
m�d + 2��mp�d + 1�p − 1�

m�d + 1� − 1
+ d + 2.

�8�

From the definition of cumulative degree distribution,
we have


m�d + 1���md�t−p − 1� + d2 − 1

d − 1
�1−�

=

m�d + 2��mp�d + 1�p − 1�
m�d + 1� − 1

+ d + 2

m�d + 2��mt�d + 1�t − 1�
m�d + 1� − 1

+ d + 2

.

When t is large enough, one can obtain

��md�t−p�1−� = �m�d + 1��p−t

and

� � 1 +
ln�m�d + 1��

ln�md�
. �9�

For m=1, Eq. �9� recovers the results previously obtained in
Refs. �24,25,41�.

B. Clustering coefficient

The clustering coefficient �6� Ci of node i is defined as the
ratio between the number of edges ei that actually exist

FIG. 3. �Color online� The cumulative degree distribution
Pcum�k� at various q values for dimension d=2. The circles �a�,
squares �b�, stars �c�, and triangles �d� denote the simulation results
for networks with different evolutionary steps t=1110, t=23,
t=14, and t=12, respectively. The four straight lines are the theo-
retical results of ��d ,q� as provided by Eq. �6�. All data are from
the average of ten independent simulations.
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among the ki neighbors of node i and its maximum possible
value ki�ki−1� /2, i.e., Ci=2ei / �ki�ki−1��. The clustering co-
efficient of the whole network is the average of Ci�s over all
nodes in the network.

For both EAN and GDAN, the analytical expression of
clustering coefficient C�k� for a single node with degree k
can be derived exactly. When a node is created it is con-
nected to all the nodes of a �d+1� clique, in which nodes are
completely interconnected. So its degree and clustering co-
efficient are d+1 and 1, respectively. In the following steps,
if its degree increases one by a newly created node connect-
ing to it, then there must be d existing neighbors of it attach-
ing to the new node at the same time. Thus for a node of
degree k, we have

C�k� =

d�d + 1�
2

+ d�k − d − 1�

k�k − 1�
2

=

2d�k −
d + 1

2
�

k�k − 1�
, �10�

which depends on degree k and dimension d. For k�d, the
C�k� is inversely proportional to degree k. The scaling
C�k�	k−1 has been found for some network models
�24,25,28,30–32,41–43�, including DANs and RANs
�24,25,41–43�, and has also been observed in several real-
life networks �30�.

Using Eq. �10�, we can obtain the clustering C̄t of the
networks at step t:

C̄t =
1

Nt
�
r=0

t 2d�Dr −
d + 1

2
�Lv�r�

Dr�Dr − 1�
, �11�

where the sum runs over all the nodes and Dr is the degree of
the nodes created at step r, which is given by Eq. �5� or �7�.

1. Evolutionary Apollonian networks

For EAN, it can be easily proved that for any fixed d, C̄t

increases with q, and that for arbitrary fixed q, C̄t increases
with d. Exactly analytical computation shows: in the case

d=2, when q increases from 0 to 1, C̄ grows from 0.7366 to

0.8284, with a special value C̄t=0.7934 for q=0.5. Likewise,

in the case d=3, C̄ increases from 0.8021 to 0.8852 when q

increases from 0 to 1, especially C̄t=0.8585 for q=0.5 �see
also Refs. �24,41–43��. Therefore, the evolutionary networks
are highly clustered. Figure 4 shows the clustering coeffi-
cient of the network as a function of q for d=2 and d=3,
respectively, which is in accordance with our above conclu-
sions. From Figs. 3 and 4, one can see that both degree

exponent � and clustering coefficient C̄t depend on the pa-
rameter q. The mechanism resulting in this relation deserves
further study. The fact that a biased choice of the cliques at
each iteration may be a possible explanation, see Ref. �47�.

2. General deterministic Apollonian networks

For GDANs, in the infinite network order limit �Nt→	�,
Eq. �11� converges to a nonzero value. When d=2, for

m=1, 2, and 3, C is equal to 0.8284, 0.8602, and 0.8972,
respectively. When m=2, for d=2, 3, and 4, C are 0.8602,
0.9017, and 0.9244, respectively. Therefore, the clustering
coefficient of GDANs is very high. Moreover, similarly to
the degree exponent �, clustering coefficient C is determined
by both d and m. Figure 5 shows the dependence of C on d
and m. From Figs. 5�a� and 5�b�, one can see that for any
fixed m, C increases with d. But the dependence relation of C
on m �see Fig. 5�b�� is more complex: �i� when m
2 and
d
6, for the same d, C increases with m; �ii� when m
2
and d�6, for the same d, C decreases with m; �iii� when
m�3, for arbitrary fixed d, C increases with m. Further ef-
fort should be extended to this complicated relation.

C. Average path length for evolutionary Apollonian networks

We label the nodes by their creation times
v=1,2 ,3 , . . . ,N−1,N. Using l�N� to represent the APL of

the our networks with order N, then we have l�N�=
2��N�

N�N−1� ,

where ��N�=�1
i�j
Ndi,j is the total distance, in which di,j

FIG. 4. �Color online� The clustering coefficient of the whole
network as a function of q and d. Results are averaged over ten
network realizations for each datum.

FIG. 5. �Color online� The dependence relation of C on d
and m.
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is the smallest distance between node i with node j. Now we
study the APL of the present model by using the approach
similar to that in Refs. �42,43�.

Since the distances between existing node pairs will not
be affected by the addition of new nodes, thus we have

��N + 1� = ��N� + �
i=1

N

di,N+1. �12�

As in the analysis of Refs. �42,43�, Eq. �12� can be rewritten
approximately as

��N + 1� = ��N� + N + �N − d − 1�l�N − d� . �13�

It is clear that

�N − d − 1�l�N − d� =
2��N − d�

N − d
�

2��N�
N

. �14�

From Eqs. �13� and �14�, we can provide an upper bound for
the variation of ��N� as

d��N�
dN

= N +
2��N�

N
, �15�

which leads to

��N� = N2�ln N + �� , �16�

where � is a constant. As ��N�	N2 ln N, we have
l�N�	 ln N.

It should be emphasized that as Eq. �15� has been deduced
from an inequality, then l�N� increases at most as ln N with
N. Here we only give an upper bound for APL, which in-
creases slightly slower than ln N. Thus, our model exhibits
the small-world property. Especially, in the case of q=1, we
can exactly compute the diameter of the network, which is
the maximum distance between all node pairs of a graph. A
previously reported analytical result has shown that the di-
ameter grows logarithmically with the order of the network
�41�. In Fig. 6, we report the simulation results on the APL of

networks for different q and d. From Fig. 6, one can see that
for fixed d, APL decreases with increasing q; and for fixed q,
APL is a decreasing function of d. When network order N is
small, APL is a linear function of ln N; while N becomes
large, APL increases slightly slower than ln N.

D. Diameter for general deterministic Apollonian networks

The diameter of a network characterizes the maximum
communication delay in the network and is defined as the
longest shortest path between all pairs of vertices. In what
follows, the notations �x� and �x� represent the integers ob-
tained by rounding x to the nearest integers towards infinity
and minus infinity, respectively. Now we compute the
diameter of A�d , t�, denoted by diam�A�d , t�� for d�2:

Step 0. The diameter is 1.
Steps 1 to � d

2 �. In this case, the diameter is 2, since any
new vertex is by construction connected to a �d+1� clique,
and since any �d+1� clique during those steps contains at
least d

2 +2 �d even� or d+1
2 +1 �d odd� vertices from the initial

�d+2� clique A�d ,0� obtained after step 0. Hence, any two
newly added vertices u and v will be connected respectively
to sets Su and Sv, with Su�V�A�d ,0�� and Sv�V�A�d ,0��,
where V�A�d ,0�� is the vertex set of A�d ,0�; however, since

Su
� d

2 +2 �d even� and 
Sv
� d+1
2 +1 �d odd�, where 
S
 de-

notes the number of elements in set S, we conclude that
Su�Sv�Ø, and thus the diameter is 2.

Steps � d
2 �+1 to d+1. In any of those steps, some newly

added vertices might not share a neighbor in the original
�d+2� clique A�d ,0� obtained after step 0; however, any
newly added vertex is connected to at least one vertex of the
initial clique A�d ,0�. Thus, the diameter equals to 3.

Further steps. Clearly, at any step t�d+2, the diameter
always lies between a pair of vertices that have just been
created at this step. We will call the newly created vertices
“outer” vertices. At any step t�d+2, we note that an outer
vertex cannot be connected with two or more vertices that
were created during the same step 0� t�
 t−1. Moreover, by
construction no two vertices that were created during a given
step are neighbors, thus they cannot be part of the same �d
+1� clique. Thus, for any step t�d+2, some outer vertices
are connected with vertices that appeared at pairwise differ-
ent steps. Thus, there exists an outer vertex vt created at
step t, which is connected to vertices vi�s, 1
 i
 t−1,
all of which are pairwise distinct. We conclude that vt is
necessarily connected to a vertex that was created at a step
t0
 t−d−1. If we repeat this argument, then we obtain an
upper bound on the distance from vt to the initial clique
A�d ,0�. Let t=
�d+1�+�, where 1
�
d+1. Then, we see
that vt is at distance at most 
+1 from a vertex in A�d ,0�.
Hence any two vertices vt and wt in A�d , t� lie at distance at
most 2�
+1�+1; however, depending on �, this distance can
be reduced by 1, since when �
 � d

2 �, we know that two ver-
tices created at step � share at least a neighbor in A�d ,0�.
Thus, when 1
 p
 � d

2 �, diam�A�d , t��
2�
+1�, while when
� d
2 �+1
 p
d+1, diam�A�d , t��
2�
+1�+1. One can see

that these distance bounds can be reached by pairs of outer
vertices created at step t. More precisely, those two vertices

FIG. 6. Semilogarithmic graph of the APL vs the network order
N. In addition to N, APL depends on d and q. Each data is obtained
by ten independent network realizations. The lines are linear
functions of ln N.
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vt and wt share the property that they are connected to d
vertices that appeared respectively at steps t−1, t−2, . . . , t
−d−1.

Based on the above arguments, one can easily see that for
t�d+2, the diameter increases by 2 every d+1 steps. More
precisely, we have the following result, for any d�1 and
t�1 �when t=0, the diameter is clearly equal to 1�:

diam�A�d,t�� = 2�� t − 1

d + 1 � + 1� + f�d,t� ,

where f�d , t�=0 if t− � t−1
d+1 ��d+1��� d

2 �, and 1 otherwise.
In the limit of large t, diam�A�d , t��	 2t

d+1 , while
Nt	�m�d+1��t, thus the diameter is small and scales loga-
rithmically with the network order.

V. SYNCHRONIZATION ON SOME LIMITING CASES
FOR EVOLUTIONARY APOLLONIAN NETWORKS

The ultimate goal of the study of network structure is to
study and understand the workings of systems built upon
those networks �1–4�. Recently, some researchers have fo-
cused on the analysis of functional or dynamical aspects of
processes occurring on networks. One particular issue at-
tracting much attention is the synchronizability of oscillator
coupling networks �48�. Synchronization is observed in di-
verse natural and man-made systems and is directly related
to many specific problems in a variety of different disci-
plines. It has found practical applications in many fields in-
cluding communications, optics, neural networks, and geo-
physics �49–54�. After studying the relevant characteristics
of network structure, which is described in the last sections,
we will study the synchronization behavior on the networks.

We follow the general framework proposed in Refs.
�55,56�, where a criterion based on spectral techniques was
established to determine the stability of synchronized states
on networks. Consider a network of N identical dynamical
systems with linearly and symmetric coupling between oscil-
lators. The set of equations of motion for the system are

ẋi = F�xi� + ��
j=1

N

GijH�x j� , �17�

where ẋi=F�xi� governs the dynamics of each individual
node, H�x j� is the output function and � the coupling
strength, and Gij is the Laplacian matrix, defined by Gii=ki if
the degree of node i is ki, Gij =−1 if nodes i and j are con-
nected, and Gij =0 otherwise.

Since matrix G is positive semidefinite and each rows of it
has zero sum, all eigenvalues of G are real and non-negative
and the smallest one is always equal to zero. We order the
eigenvalues as 0=�1
�2
 ¯ 
�N. Then one can use the
ratio of the maximum eigenvalue �N to the smallest nonzero
one �2 to measure the synchronizability of the network
�55,56�. If the eigenratio R=�N /�2 satisfies R�
2 /
1, we
say the network is synchronizable. Here the eigenratio R de-
pends on the the network topology, while 
2 /
1 depends
exclusively on the dynamics of individual oscillator and the
output function. Ratio R=�N /�2 represents the synchroniz-

ability of the network: the larger the ratio, the more difficult
it is to synchronize the oscillators, and vice versa.

After reducing the issue of synchronizability to finding
eigenvalues of the Laplacian matrix G, we now investigate
the synchronization of our networks. Here we only study two
limiting cases: q=1 �24,25,41� and q→0 �but q�0� �42,43�.
The eigenratio R of different networks is obtained numeri-
cally for different d and q, as exhibited in Fig. 7. One can see
that for the same d and N, R of the deterministic networks is
smaller than that of their corresponding random versions,
which implies that the synchronizability of the former is bet-
ter. Even in the case of different d, the deterministic net-
works �d=2� are easier to synchronize than those random
networks �d=3� with the same order but different average
node degree.

Why coupling systems on the two class of networks ex-
hibit very different synchronizability? Previously reported
results have indicated that underlying network structures
play significant roles in the synchronizability of coupled os-
cillators. However, the key structural feature that determines
the collective synchronization behavior remains unclear.
Many works have discussed this issue. Some authors believe
that a shorter APL tends to enhance synchronization
�55,57,58�. In contrast, Nishikawa et al. reported that syn-
chronizability is suppressed as the degree distribution be-
comes more heterogeneous, even for a shorter APL �59�.
Also, some investigations showed that R decreases whenever
the betweeness heterogeneity decreases �60�, while an oppo-
site conclusion was claimed in Ref. �61�. In Ref. �62�, the
authors asserted that larger average node degree corresponds
to better synchroizability. All these may rationally explain
the relations between synchronizability and network struc-
ture in some cases, but do not well account for the synchro-
nizability on the evolutionary Apollonian networks. More re-
cently, some other authors have presented that structure and
distribution of hubs is the key to what enhances synchroniz-
ability �63,64�, which may be a possible explanation for the
better synchronizability of deterministic networks when
compared to random ones. But we speculate that the syn-
chronizability on the evolutionary Apollonian networks is

FIG. 7. �Color online� The eigenratio R as a function of network
order N. All quantities for random networks are averaged over 50
realizations.

EVOLVING APOLLONIAN NETWORKS WITH SMALL- … PHYSICAL REVIEW E 74, 046105 �2006�

046105-7



not determined by a single structure property, but by the
combination of APL, heterogeneity of degree distribution,
betweeness centrality, modularity, mean node degree, and so
on �63�, which need further research.

VI. CONCLUSION AND DISCUSSION

In summary, on the basis of Apollonian packings, we have
proposed and studied two kinds of evolving networks: evo-
lutionary Apollonian networks �EANs� and general deter-
ministic Apollonian networks �GDANs�. According to the
network construction processes we have presented two algo-
rithms to generate the networks, based on which we have
obtained the analytical and numerical results for degree dis-
tribution and clustering coefficient, as well as the average
path length, which agree well with a large amount of real
observations. The degree exponents can be adjusted continu-
ously between 2 and 3, and the clustering coefficient is very
large. Moreover, we have studied the synchronization of
some limiting cases of the EAN and found that the stochastic

networks are more difficult to synchronize than their deter-
ministic counterparts.

Because of their three important properties: power-law
degree distribution, small intervertex separation, and large
clustering coefficient, the proposed networks possess good
structural features in accordance with a variety of real-life
networks. For the special case of d=2, the networks are
maximal planar graphs. This may be helpful for designing
printed circuits. Moreover, our networks consist of complete
graphs, which have been observed in a variety of the real-
world networks, such as movie actor collaboration networks,
scientific collaboration networks and networks of company
directors �1–4�.
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